Structural basis of the chiral selectivity of Pseudomonas cepacia lipase.
نویسندگان
چکیده
To investigate the enantioselectivity of Pseudomonas cepacia lipase, inhibition studies were performed with Sc- and Rc-(Rp,Sp)-1,2-dialkylcarbamoylglycero-3-O-p-nitrophenyl alkylphosphonates of different alkyl chain lengths. P. cepacia lipase was most rapidly inactivated by Rc-(Rp,Sp)-1,2-dioctylcarbamoylglycero-3-O-p-nitrophenyl octylphosphonate (Rc-trioctyl) with an inactivation half-time of 75 min, while that for the Sc-(Rp,Sp)-1,2-dioctylcarbamoylglycero-3-O-p-nitrophenyl octyl-phosphonate (Sc-trioctyl) compound was 530 min. X-ray structures were obtained of P. cepacia lipase after reaction with Rc-trioctyl to 0.29-nm resolution at pH 4 and covalently modified with Rc-(Rp,Sp)-1,2-dibutylcarbamoylglycero-3-O-p-nitrophenyl butyl-phosphonate (Rc-tributyl) to 0.175-nm resolution at pH 8.5. The three-dimensional structures reveal that both triacylglycerol analogues had reacted with the active-site Ser87, forming a covalent complex. The bound phosphorus atom shows the same chirality (Sp) in both complexes despite the use of a racemic (Rp,Sp) mixture at the phosphorus atom of the triacylglycerol analogues. In the structure of Rc-tributyl-complexed P. cepacia lipase, the diacylglycerol moiety has been lost due to an aging reaction, and only the butyl phosphonate remains visible in the electron density. In the Rc-trioctyl complex the complete inhibitor is clearly defined; it adopts a bent tuning fork conformation. Unambiguously, four binding pockets for the triacylglycerol could be detected: an oxyanion hole and three pockets which accommodate the sn-1, sn-2, and sn-3 fatty acid chains. Van der Waals' interactions are the main forces that keep the radyl groups of the triacylglycerol analogue in position and, in addition, a hydrogen bond to the carbonyl oxygen of the sn-2 chain contributes to fixing the position of the inhibitor.
منابع مشابه
Preparation and catalytic performance of lipases encapsulated in sol-gel materials.
Three kinds of lipases (from Candida antarctica, Pseudomonas cepacia, and Pseudomonas fluorescens) were encapsulated in inorganic matrices by the sol-gel method in order to synthesize chiral compounds by kinetic resolution. Sol-gel lipases prepared with vinyltriethoxysilane had higher hydrolysis activity for 2-octyl acetate than those with other silane precursors: tetramethoxysilane, methyltrim...
متن کاملHigh-level formation of active Pseudomonas cepacia lipase after heterologous expression of the encoding gene and its modified chaperone in Escherichia coli and rapid in vitro refolding.
The lipase from Pseudomonas cepacia ATCC 21808 (recently reclassified as Burkholderia cepacia) is widely used by organic chemists for enantioselective synthesis and is manufactured from recombinant P. cepacia harboring on a plasmid the clustered genes for lipase and its chaperone. High levels of expression of inactive lipase (40%) in Escherichia coli were achieved with pCYTEXP1 under the contro...
متن کاملImmobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil.
Enzymatic transesterification of soybean oil with methanol and ethanol was studied. Of the nine lipases that were tested in the initial screening, lipase PS from Pseudomonas cepacia resulted in the highest yield of alkyl esters. Lipase from Pseudomonas cepacia was further investigated in immobilized form within a chemically inert, hydrophobic sol-gel support. The gel-entrapped lipase was prepar...
متن کاملCharacterization of Pseudomonas cepacia isolates from patients with cystic fibrosis.
Pseudomonas cepacia infections which follow a fulminant course and which include septicemia are being reported with increasing frequency from cystic fibrosis patients. Forty-eight P. cepacia isolates from cystic fibrosis patients were screened for production of potential virulence factors. A majority of strains tested produced protease and lipase. Eleven strains harbored plasmids of approximate...
متن کاملBacterial lipases for biotechnological applications
Lipase genes originating from the Gram-negative bacteria Serrutiu marcescens and Pseudomonus urruginosa were cloned. S. marcescens lipase was overexpressed in Escherichia coli yielding inclusion bodies which were purified and finally refolded to give enzymatically active lipase. The lipase operon of P. aeruginosa consisting of genes 1ipA and lip14 was cloned behind the T7 410 promoter and overe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European journal of biochemistry
دوره 254 2 شماره
صفحات -
تاریخ انتشار 1998